Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Generating Adversarial Examples for Topic-dependent Argument Classification

Tobias Mayer 1 Santiago Marro 1 Elena Cabrio 1 Serena Villata 1
1 WIMMICS - Web-Instrumented Man-Machine Interactions, Communities and Semantics
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - SPARKS - Scalable and Pervasive softwARe and Knowledge Systems
Abstract : In the last years, several empirical approaches have been proposed to tackle argument mining tasks, e.g., argument classification, relation prediction, argument synthesis. These approaches rely more and more on language models (e.g., BERT) to boost their performance. However, these language models require a lot of training data, and size is often a drawback of the available argument mining data sets. The goal of this paper is to assess the robustness of these language models for the argument classification task. More precisely, the aim of the current work is twofold: first, we generate adversarial examples addressing linguistic perturbations in the original sentences, and second, we improve the robustness of argument classification models using adversarial training. Two empirical evaluations are addressed relying on standard datasets for AM tasks, whilst the generated adversarial examples are qualitatively evaluated through a user study. Results prove the robust-ness of BERT for the argument classification task, yet highlighting that it is not invulnerable to simple linguistic perturbations in the input data.
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02933266
Contributeur : Tobias Mayer <>
Soumis le : mardi 8 septembre 2020 - 11:57:56
Dernière modification le : jeudi 21 janvier 2021 - 14:32:02
Archivage à long terme le : : mercredi 2 décembre 2020 - 22:33:34

Fichier

63_Mayer.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02933266, version 1

Citation

Tobias Mayer, Santiago Marro, Elena Cabrio, Serena Villata. Generating Adversarial Examples for Topic-dependent Argument Classification. COMMA 2020 - 8th International Conference on Computational Models of Argument, Sep 2020, Perugia, Italy. ⟨hal-02933266⟩

Partager

Métriques

Consultations de la notice

89

Téléchargements de fichiers

118