A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, and T. Matsunaga, Formation of magnetite by bacteria and its application, Journal of The Royal Society Interface, vol.101, issue.3, pp.977-999, 2008.
DOI : 10.1016/S0168-1656(02)00342-5

D. Bazylinski and R. Frankel, Magnetosome formation in prokaryotes, Nature Reviews Microbiology, vol.6, issue.4, 2004.
DOI : 10.1046/j.1365-2958.1997.5601928.x

URL : https://works.bepress.com/rfrankel/42/download/

D. Bordelon, C. Cornejo, C. Grüttner, F. Westphal, T. Deweese et al., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields, Journal of Applied Physics, vol.3, issue.12, pp.124904-124904, 2011.
DOI : 10.1016/j.jmmm.2006.10.1151

R. Calugay, H. Miyashita, Y. Okamura, and T. Matsunaga, Siderophore production by the magnetic 291 bacterium Magnetospirillum magneticum AMB-1 FEMS Micribiology Letters, pp.371-375, 2008.
DOI : 10.1263/jbb.101.445

F. Guo, Y. Liu, Y. Chen, T. Tang, W. Jiang et al., A novel rapid and continuous procedure for 293 large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense, Appl. Microbiol, p.294, 2011.

U. Heyen and D. Schüler, Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor, Applied Microbiology and Biotechnology, vol.29, issue.5-6, pp.536-544, 2003.
DOI : 10.1016/S0141-0229(01)00343-X

A. Komeili, Cell Biology of Magnetosome Formation, Monogr, vol.3, pp.163-174, 2006.
DOI : 10.1007/7171_042

S. Kundu and G. Kulkarni, Enhancement of magnetotactic bacterial yield in a modified MSGM 299 medium without alteration of magnetosomes properties, Indian J. Exp. Bio, vol.48, pp.518-523, 2010.

C. Lang and D. Schüler, Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes, Journal of Physics: Condensed Matter, vol.18, issue.38, pp.2815-2828, 2006.
DOI : 10.1088/0953-8984/18/38/S19

T. Matsunaga, F. Tadokoro, and N. Nakamura, Mass culture of magnetic bacteria and their application to flow type immunoassays, IEEE Transactions on Magnetics, vol.26, issue.5, pp.1557-1559, 1990.
DOI : 10.1109/20.104444

T. Matsunaga, H. Togo, and T. Tanaka, Production of Luciferase-Magnetic Particle Complex by, p.312, 2000.

R. Magnetospirillum-sp, AMB-1, Biotechnology and bioengineering, vol.70, pp.704-709

P. U. Reichard, R. Kretzschmar, and S. Kraemer, Dissolution mechanisms of goethite in the presence 314 of siderophores and organic acids Geochimica et Cosmochimica Acta, pp.5635-5650, 2007.

D. Schüler and E. Bauerlein, Iron-limited growth and kinetics of iron uptake in Magnetospirillum 316 gryphiswaldense, Arch. Microbiol, vol.166, pp.301-307, 1996.

J. Sun, F. Zhao, T. Tang, W. Jiang, J. Tian et al., High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air, Applied Microbiology and Biotechnology, vol.94, issue.5, pp.389-397, 2008.
DOI : 10.1016/S0723-2020(11)80386-3

J. Sun, J. Duan, S. Dai, J. Ren, Y. Zhang et al., In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers, Cancer Letters, vol.258, issue.1, pp.109-117, 2007.
DOI : 10.1016/j.canlet.2007.08.018

C. Yang, H. Takeyama, T. Tanaka, and T. Matsunaga, Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1, Enzyme and Microbial Technology, vol.29, issue.1, pp.13-19, 2001.
DOI : 10.1016/S0141-0229(01)00343-X

C. Yang, H. Takeyama, and T. Matsunaga, Iron Feeding Optimization and Plasmid Stability, p.330, 2001.

B. Rhodamine, citric acid, 3-(N-morpholino)propanesulfonic 351 acid, 3-(cyclohexylamino)-1-propanesulfonic acid, calcein, dextran, alendronic acic, neridronic acid and 352 nicotinamide, p.353