A. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

G. Giakisikli and A. Anthemidis, Magnetic materials as sorbents for metal/metalloid preconcentration 599 and/or separation. A review, Analytica Chimica Acta. juill, vol.789, pp.1-16, 2013.
DOI : 10.1016/j.aca.2013.04.021

Q. Pankhurst, J. Connolly, S. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.167-81, 2003.
DOI : 10.1088/0022-3727/36/13/201

C. C. Berry and A. S. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.198-206, 2003.
DOI : 10.1088/0022-3727/36/13/203

A. Jordan, R. Scholz, K. Maier-hauff, F. Van-landeghem, N. Waldoefner et al., The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma, Journal of Neuro-Oncology, vol.89, issue.1, pp.7-14, 2006.
DOI : 10.1111/j.1349-7006.1998.tb00586.x

H. Hyperthermia and . &amp, Neck Cancer in Mouse Models, Theranostics, vol.2, issue.1, pp.113-134, 2012.

B. Thiesen and A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, International Journal of Hyperthermia, vol.12, issue.6, pp.467-74, 2008.
DOI : 10.1007/BF03256264

A. Silva, T. Oliveira, J. B. Mamani, S. Malheiros, L. Malavolta et al., Application of 612 hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment, International Journal of Nanomedicine. mars, vol.591, pp.613-614, 2011.

H. Fine, K. Dear, J. Loeffler, P. Black, and G. Canellos, Meta-analysis of radiation therapy with 615 and without adjuvant chemotherapy for malignant gliomas in adults, CANCER-PHILADELPHIA, vol.61671, pp.2585-2585, 1993.

L. Branquinho, M. Carrião, A. Costa, N. Zufelato, M. Sousa et al., Effect of magnetic 618 dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. 619 Scientific Reports Disponible sur: 620 http, 2013.

M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, International Journal of Hyperthermia, vol.59, issue.7, pp.637-684, 2005.
DOI : 10.1080/02656730150502323

S. Laurent, S. Dutz, U. Häfeli, and M. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, vol.166, issue.1-2, pp.8-23, 2011.
DOI : 10.1016/j.cis.2011.04.003

R. Frankel, The discovery of magnetotactic/magnetosensitive bacteria, Chinese Journal of Oceanology and Limnology, vol.36, issue.1, pp.1-2, 2009.
DOI : 10.1007/s00343-009-0001-7

R. Blakemore, Magnetotactic Bacteria, Annual Review of Microbiology, vol.36, issue.1, pp.217-255, 1982.
DOI : 10.1146/annurev.mi.36.100182.001245

W. Lin, D. Bazylinski, X. T. Wu, L. Pan, and Y. , Life with compass: diversity and biogeography of 632 magnetotactic bacteria: Magnetotactic bacterial diversity and biogeography. Environmental 633 Microbiology, sept, vol.16, issue.9, pp.2646-58, 2014.

M. Bacterium, Applied and Environmental Microbiology, pp.3232-3239, 1995.

D. Schüler, Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS 638 Microbiology Reviews, juill, vol.32, issue.4, pp.654-72, 2008.

D. Schüler, Formation of magnetosomes in magnetotactic bacteria Journal of molecular 640 microbiology and biotechnology, pp.79-86, 1999.

E. Alphandéry, S. Faure, O. Seksek, F. Guyot, and I. Chebbi, Chains of Magnetosomes Extracted from 642 AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy, ACS Nano. 23 août, vol.6435, issue.8, pp.6279-96, 2011.

X. Wang, F. Wei, A. Liu, L. Wang, J. Wang et al., Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles, Biomaterials, vol.33, issue.14, pp.3719-3751, 2012.
DOI : 10.1016/j.biomaterials.2012.01.058

M. R?cuciu, D. Creang?, and A. Airinei, Citric-acid-coated magnetite nanoparticles for biological applications, The European Physical Journal E, vol.14, issue.2, pp.117-138, 2006.
DOI : 10.1140/epje/i2006-10051-y

M. Bloemen, W. Brullot, T. Luong, N. Geukens, A. Gils et al., Improved functionalization of 652 oleic acid-coated iron oxide nanoparticles for biomedical applications, Journal of Nanoparticle 653 Research [Internet]. sept 2012, 2016.

C. Barrera, A. Herrera, Y. Zayas, and C. Rinaldi, Surface modification of magnetite nanoparticles for biomedical applications, Journal of Magnetism and Magnetic Materials, vol.321, issue.10, pp.1397-1406, 2009.
DOI : 10.1016/j.jmmm.2009.02.046

C. Grüttner, K. Müller, J. Teller, F. Westphal, A. Foreman et al., Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy, Journal of Magnetism and Magnetic Materials, vol.311, issue.1, pp.181-187, 2007.
DOI : 10.1016/j.jmmm.2006.10.1151

D. Schultheiss and D. Schüler, Development of a genetic system for Magnetospirillum gryphiswaldense. 665 Archives of microbiology, pp.89-94, 2003.

Y. Zhang, X. Zhang, W. Jiang, Y. Li, and J. Li, Semicontinuous Culture of Magnetospirillum gryphiswaldense MSR-1 Cells in an Autofermentor by Nutrient-Balanced and Isosmotic Feeding Strategies, Applied and Environmental Microbiology, vol.77, issue.17, pp.5851-5857, 2011.
DOI : 10.1128/AEM.05962-11

A. Philipse and D. Maas, Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and 670
DOI : 10.1021/la0205811

J. Xie, X. Liu, W. Liu, and G. Qiu, Extraction of magnetosome from Acidthiobacillus ferrooxidans, Biomagnetism, vol.6721, issue.3, pp.36-38, 2005.

K. Grunberg, E. Muller, A. Otto, R. Reszka, D. Linder et al., Biochemical and Proteomic 674 Analysis of the Magnetosome Membrane in Magnetospirillum gryphiswaldense. Applied and 675 Environmental Microbiology, pp.1040-50, 2004.

P. Magalhães, A. Lopes, P. Mazzola, C. Rangel-yagui, T. Penna et al., Methods of 677 endotoxin removal from biological preparations: a review, J Pharm Pharm Sci, vol.10, issue.3, pp.388-404, 2007.

M. Babic, D. Horák, M. Trchová, P. Jendelová, K. Glogarová et al., -lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling, Bioconjugate Chemistry, vol.19, issue.3, pp.740-750, 2008.
DOI : 10.1021/bc700410z

URL : https://hal.archives-ouvertes.fr/jpa-00246463

C. Kotsmar, K. Yoon, H. Yu, S. Ryoo, J. Barth et al., Stable Citrate-Coated Iron Oxide Superparamagnetic Nanoclusters at High Salinity, Industrial & Engineering Chemistry Research, vol.49, issue.24, pp.12435-12478, 2010.
DOI : 10.1021/ie1010965

T. Jain, M. Morales, S. Sahoo, D. Leslie-pelecky, and V. Labhasetwar, Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents, Molecular Pharmaceutics, vol.2, issue.3, pp.194-205, 2005.
DOI : 10.1021/mp0500014

K. Yang, H. Peng, Y. Wen, and N. Li, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles, Applied Surface Science, vol.256, issue.10, pp.3093-3100, 2010.
DOI : 10.1016/j.apsusc.2009.11.079

G. Liu, R. Hong, L. Guo, Y. Li, and H. Li, Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles, Applied Surface Science, vol.257, issue.15, pp.6711-6718, 2011.
DOI : 10.1016/j.apsusc.2011.02.110

D. Bazylinski and R. Frankel, Magnetosome formation in prokaryotes, Nature Reviews Microbiology, vol.6, issue.4, pp.217-247, 2004.
DOI : 10.1046/j.1365-2958.1997.5601928.x

URL : https://works.bepress.com/rfrankel/42/download/

R. Liu, J. Liu, J. Tong, T. Tang, W. Kong et al., Heating effect and biocompatibility of 694 bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia, Progress in 695 Natural Science: Materials International, pp.31-40, 2012.

D. Predoi, E. Andronescu, M. Radu, M. Munteanu, and A. Dinischiotu, Synthesis and characterization of 697 biocompatible maghemite nanoparticles, Digest J Nanom Biostr, vol.5, pp.779-786, 2010.

Ö. Özdemir and D. Dunlop, The effect of oxidation on the Verwey transition in magnetite. Geophysical 699 Research Letters, pp.1671-1675, 1993.

E. Alphandéry, Enhanced antitumor efficacy of biocompatible magnetosomes compared with 702 chemically synthesized nanoparticles for the magnetic hyperthermia treatment of murine GL-261 703 glioblastomaManuscript in preparation.[When N-PLL and IONP were administered intratumorally 704 to mice bearing GL-261 tumors and were then exposed 11 to 15 times to an alternating magnetic 705 field of 198 kHz and 25 mT for 30 minutes

M. Abbas, M. Islam, B. Rao, M. Abdel-hamed, and C. Kim, Facile one-pot chemical approach for synthesis of monodisperse chain-like superparamagnetic maghemite (??-Fe2O3) nanoparticles, Journal of Industrial and Engineering Chemistry, vol.31, pp.43-49, 2015.
DOI : 10.1016/j.jiec.2015.06.025

Z. Chen, Y. Zhang, S. Zhang, J. Xia, J. Liu et al., Preparation and characterization of 714 water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with 715 DMSA, Colloids and Surfaces A: Physicochemical and Engineering Aspects. mars 716, vol.316, pp.210-216, 2008.

L. Panasci, B. Jean-claude, D. Vosilescu, A. Mustafa, S. Damian et al., Sensitization to 723 doxorubicin resistance in breast cancer cell lines by tamoxifen and megestrol acetate, Biochemical Pharmacology, vol.72452, issue.7, pp.1097-102, 1996.
DOI : 10.1016/0006-2952(96)00456-x

V. Rantanen, S. Grénman, J. Kulmala, and R. Grénman, Comparative evaluation of cisplatin and 726 carboplatin sensitivity in endometrial adenocarcinoma cell lines, British journal of cancer, vol.72769, issue.3, pp.482-728, 1994.

C. Wilhelm, C. Billotey, J. Roger, J. Pons, J. Bacri et al., Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating, Biomaterials, vol.24, issue.6, pp.1001-1012, 2003.
DOI : 10.1016/S0142-9612(02)00440-4

Y. Rabin, Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense?, International Journal of Hyperthermia, vol.18, issue.3, pp.194-202, 2002.
DOI : 10.1080/02656730110116713

N. Jadhav, A. Prasad, A. Kumar, R. Mishra, S. Dhara et al., Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications, Colloids and Surfaces B: Biointerfaces, vol.108, pp.158-68, 2013.
DOI : 10.1016/j.colsurfb.2013.02.035

E. Alphandéry, A. Idbaih, C. Adam, J. Delattre, C. Schmitt et al., Full intracranial U87- 740 Luc tumor disappearance in 100% of mice bearing these tumors using nonpyrogenic magnetosome 741 minerals coated with poly-L-lysine heated under the application of an alternating magnetic field