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As multifactorial and chronic diseases, cancers are among these pathologies for which 
the exposome concept is essential to gain more insight into the associated etiology and, 
ultimately, lead to better primary prevention strategies for public health. Indeed, cancers 
result from the combined influence of many genetic, environmental and behavioral 
stressors that may occur simultaneously and interact. It is thus important to properly 
account for multifactorial exposure patterns when estimating specific cancer risks at 
individual or population level. Nevertheless, the risk factors, especially environmental, are 
still too often considered in isolation in epidemiological studies. Moreover, major statistical 
difficultés occur when exposures to several factors are highly correlated due, for 
instance, to common sources shared by several pollutants. Suitable statistical methods 
must then be used to deal with these multicollinearity issues. In this work, we focused 
on the specific problem of estimating a disease risk from highly correlated environmental 
exposure covariates and a censored survival outcome. We extended Bayesian profile 
regression mixture (PRM) models to this context by assuming an instantaneous excess 
hazard ratio disease sub-model. The proposed hierarchical model incorporates an 
underlying truncated Dirichlet process mixture as an attribution sub-model. A specific 
adaptive Metropolis-Within-Gibbs algorithm—including label switching moves—was 
implemented to infer the model. This allows simultaneously clustering individuals with 
similar risks and similar exposure characteristics and estimating the associated risk 
for each group. Our Bayesian PRM model was applied to the estimation of the risk 
of death by lung cancer in a cohort of French uranium miners who were chronically 
and occupationally exposed to multiple and correlated sources of ionizing radiation. 
Several groups of uranium miners with high risk and low risk of death by lung 
cancer were identified and characterized by specific exposure profiles. Interestingly, 
our case study illustrates a limit of MCMC algorithms to fit full Bayesian PRM models
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even if the updating schemes for the cluster labels incorporate label-switching moves. 
Then, although this paper shows that Bayesian PRM models are promising tools for 
exposome research, it also opens new avenues for methodological research in this class 
of probabilistic models.

Keywords: Bayesian inference, ionizing radiation, lung cancer, multicollinearity, profile régression, survival data, 
truncated Dirichlet process mixture

1. INTRODUCTION

Over the last decade, the human exposome has emerged as 
a novel and promising research paradigm in epidemiology, 
biomedical, and environmental health sciences (1-3). Originally 
proposed by Dr. Christopher Wild in 2005 (4), it encompasses 
the totality of human environmental (meaning all non-genetic) 
exposures throughout life—from conception to death. This 
concept, that argues for a holistic and integrated consideration 
of all environmental exposures simultaneously (5, 6), is the key 
complement to the genome in terms of understanding human 
health. Its initial aim is to decipher how complex environmental 
exposure situations lead to disease development. Its final aims 
are to gain more insight into the etiology of multifactorial and 
chronic pathologies, and, ultimately, to lead to better primary 
prevention strategies for public health. Obviously, cancers are 
among these pathologies for which the exposome concept is 
essential, as they result from the combined influence of many 
genetic, environmental (i.e., physical, biological, chemical) and 
behavioral stressors that may occur simultaneously and interact 
(7-11).

In epidemiological studies, it is thus important to properly 
account for multifactorial exposure patterns when estimating (or 
predicting) specific cancer risks at individual or population level. 
However, historically, epidemiological studies linking the adverse 
effects of environmental stressors and human health have mostly 
focused on characterizing the effect of a single stressor. This one is 
typically considered of “main interest” for investigation (12, 13). 
A few additional risk factors, including other environmental 
stressors, are usually considered, but this is most frequently 
because of their feared role as potential confounders. They 
are therefore adjusted for in regression models, in order to 
estimate the effect of the “main environmental stressor of 
interest” but independently from the potential influence of 
the other risk factors (14, 15). Only a few studies aim to 
estimate the interaction between exposure to an environmental 
stressor and other risk factors (e.g., smoking and asbestos 
or radon) (16, 17), and, even more rarely, the joint effects 
of exposure to several environmental stressors (e.g., ambient 
particles and ozone) (18). In the specific field of protection 
against the effects of ionizing radiation—that will be of interest 
in this paper—estimating radiation-related cancer risks and 
its uncertainty has been a key objective for decades, for the 
purpose of setting exposure limits (19). However, although 
ionizing radiation epidemiology has successfully reached that 
goal, the question of estimating how simultaneous environmental 
exposures to multiple radiological stressors of different nature

potentially affect cancer risks has not yet been investigated 
thoroughly (20).

Estimating cancer risks due to simultaneous exposures to 
multiple environmental stressors may be challenging for several 
reasons, which are detailed elsewhere (21, 22). Particularly, major 
statistical difficulties occur when exposure-based risk factors are 
highly correlated. This occurs when collecting data on multiple 
environmental stressors during life. This may be also the case, 
for instance, when a worker is simultaneously exposed to many 
chemical and physical stressors in the course of his occupational 
activity. This situation will be referred to as co-exposure in the 
following. In this context, it is well-recognized that applying 
standard multiple regression models—in which at least two 
highly correlated predictors are assessed simultaneously- may 
lead to unstable risk coefficient estimates with high variance. 
Therefore, this approach may lead to misleading conclusions 
and unrealistic interpretations about the effect of each of the 
collinear predictors on the outcome variable (23-25). More 
sophisticated statistical methods must then be used to deal with 
this multicollinearity issue.

Although not yet widely used in practice (26), several 
statistical methods have been proposed to deal with 
multicollinearity and then, to potentially investigate the 
combined effect on health outcomes of highly correlated 
environmental stressors. Many previous studies relied on an 
environment-wide association approach (EWAS) where, in its 
simplest version, the association between each single exposure 
factor and the outcome was estimated separately (27, 28). Even if 
potentially useful to discover priority risk factors, this approach is 
mainly considered in an exploratory research phase and leads to 
limited investigations of an health-exposome association. Other 
approaches that have been proposed in this specific context 
mainly rely on: (a) variable selection in a regression context 
using, for instance, the elastic net criterion (29) or the Graphical 
Unit Evolutionary Stochastic Search (30); (b) data-driven 
dimension reduction using regression on principal components 
(31) or the sparse partial least squares regression (32, 33); (c) 
machine learning algorithms like recursive partitioning using 
random forests (34); and (d) clustering approaches to profile 
multiple correlated data (35) like k-means, the latent class 
analysis (LCA) (36) and the Bayesian profile regression mixture 
(PRM) models (37). Variable selection approaches are very 
interesting tools to identify a small subset of environmental 
stressors that are the “true villain” most responsible for affecting 
the health outcome of interest. They are particularly adapted 
when a huge number of stressors is considered. However, when 
only a few highly correlated exposure covariates are available,
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the idea is not to omit some of them in the study but rather 
to estimate an exposure-risk relationship using all available 
covariates and appropriate statistical methods to deal with 
multicollinearity issues. They may also be limited in their 
ability to efficiently differentiate true predictors from correlated 
covariates when the latter are very highly correlated (38). 
Data-driven dimension reduction aims at constructing summary 
latent variables as linear combinations of the original exposure 
covariates and then, to include these new uncorrelated variables 
in a multiple regression model (39). One major drawback is 
that these variables are constructed without considering the 
disease outcome of interest in principal component regression 
(PCR). Even if the sPLS (32) corrects for this by constructing 
uncorrelated latent variables as linear combinations of the 
original covariates and response variables, another drawback 
of data-driven dimension reduction approaches concerns the 
uncertainties related to this construction. Indeed, given that the 
disease risks are estimated in a second disjoint step, the loss of 
information about the uncertainty associated to this construction 
may lead to misleading interpretation of risk estimates. Finally, 
machine learning algorithms are both relevant and efficient 
approaches to deal with a huge number of stressors.

In this work, we focused on the specific problem of estimating 
the combined health effect—in terms of disease excess risk—of 
a few but highly correlated environmental exposure covariates, 
from a censored survival outcome. We opted for the PRM 
models. They are infinite mixture models that link a disease 
outcome to a set of correlated covariates through cluster 
membership. They are based on a Dirichlet process mixture as 
an attribution sub-model. By capturing the heterogeneity among 
the covariates, the PRM models allow both identifying specific 
patterns of covariate values—called covariate profiles—that are 
representative of a subpopulation (i.e., a cluster) and associating 
them with the disease outcome via a regression model. Then, 
inferring this probabilistic model allows both simultaneously 
identifying fine exposure profiles based on several correlated 
covariates, clustering individuals with similar risks and similar 
exposure characteristics and estimating the associated risk for 
each cluster. This joint modeling approach allows to rigorously 
capture uncertainty on all estimated parameters included in the 
different submodels. Compared to LCA and k-means algorithm, 
one of the principal motivations for PRM models is that the 
disease outcome influences cluster membership so that they 
can inform each other. Thus, the disease outcome may guide 
inference toward the most relevant clustering structures and is 
not only used during post-treatments. Another motivation for 
PRM models is that the number of clusters is unknown and 
informed by the data. Moreover, fitting PRM models under 
the Bayesian paradigm offers additional advantages. First, it 
allows dealing with the numerous latent variables included in 
these complex models and getting probabilistic answers to the 
studied question. Second, all uncertainty, including uncertainty 
associated with the clustering of the individuals, is reflected 
in credible intervals of risk parameters. Third, it provides the 
possibility to include external information on parameters in the 
form of prior distributions which is particularly useful when 
some unknown quantities of interest are not or only poorly

informed by the data. Finally, it allows predicting the disease risk 
of a multi-exposed individual while conserving the uncertainty of 
estimated parameters. These models have already been employed 
in a variety of fields including genetics (40), environmental 
epidemiology (37, 41-44) and occupational epidemiology (45, 
46) but never in ionizing radiation epidemiology. Note that an R 
package called PReMiuM (47) implements the Bayesian inference 
of PRM models for Gaussian, binary, ordinal, categorical, 
Poisson, and censored survival outcomes based on a Weibull 
distribution.

We extended the class of PRM models to deal with a 
censored survival outcome following an instantaneous excess 
hazard ratio model. This class of survival models is commonly 
used to estimate cancer risks in ionizing radiation epidemiology 
(48) but is not implemented in the PreMiuM package. The 
Bayesian inference of the proposed PRM model is conducted 
with a specific adaptive Metropolis-Within-Gibbs algorithm, 
implemented in Python and including three label switching 
moves. To illustrate our point, we applied our PRM model 
to the specific problem of estimating the risk of death by 
lung cancer among multi-exposed French uranium miners. 
Indeed, in the context of their work, underground uranium 
miners are simultaneously exposed to radon, external y-ray and 
uranium dust (as well as other chemical and physical agents). 
Interestingly, these three sources of radiation exposure are highly 
correlated to each other in the French cohort of uranium miners. 
Actually, they are associated with the same initial phenomenon 
of disintegration of uranium, which is ubiquitous in uranium 
mines (49). Moreover, at this stage, an additive or synergic 
effect of co-exposure to these various radiological components 
on lung cancer risks cannot be excluded. Until now, most of the 
epidemiological studies on the French cohort of uranium miners 
have focused on studying the association between a chronic and 
low-dose exposure to radon and lung cancer mortality, as if 
radon—that is considered to be the second leading cause of lung 
cancer after smoking (50)—had an isolated effect. An EWAS 
approach was performed where the association between each 
single source of ionizing radiation and the risk of death by 
lung cancer was estimated separately, using a Poisson regression 
model. It showed that each source of ionizing radiation was 
significantly associated to a higher risk of death by lung cancer, 
in the French cohort of uranium miners (28). We propose to 
treat the multicollinearity issue in this case study, using our 
proposed Bayesian PRM model. Up to our knowledge, this is 
the first application of Bayesian PRM models to deal with highly 
correlated co-exposure in ionizing radiation epidemiology.

2. MATERIALS AND METHODS

2.1. Study Population
The French cohort of uranium miners is a retrospective cohort 
whose characteristics, sources of data and methods of data 
collection (e.g., vital status, causes of death, ...) have been 
described previously (28). Briefly, the last update included 5,086 
males who were employed as uranium miners for at least 1 
year in the CEA-COGEMA group between 1946 and 1990 and 
who were followed from 1946 to December 31, 2007. Uranium
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TABLE 1 | Main characteristics of the post-55 French cohort of uranium miners.

No. of miners

Age at entry into study, mean [min, max]

Duration of work in years, mean [min, max]

Duration of follow-up in years, mean [min, max]

3,377

28.3 [16.9, 57.7]

16.7 [1.0, 40.9]

32.8 [0.1,51.0]

Vital status, n (%)
Alive <85 years old 2,412 (71.4)

Alive >85 years old 74 (2.2)

Death from lung cancer 94 (2.8)

Death from another cause 777 (23.0)

Lost to follow-up 20 (0.6)

Exposure to radon*
Exposed miners, n (%) 2,910 (86.2)

Duration of exposure (in years), mean [min, max] 12.9 [1.0, 35.0]

Cumulative exposure (in WLM), mean [min, max] 17.8 [0.003, 128.4]

Exposure to y-rays*
Exposed miners, n (%) 3,240 (95.9)

Duration of exposure (in years), mean [min, max] 13.2 [1.0, 36.0]

Cumulative exposure (in mSv), mean [min, max] 54.9 [0.2, 470.1]

Exposure to uranium dusts*
Exposed miners, n (%) 2,746 (81.3)

Duration of exposure (in years), mean [min, max] 12.9 [1.0-35.0]

Cumulative exposure (in kBq-m-3-h), mean [min, max] 1.64 [0.01, 10.4]

*Resuits only on measured exposures.

miners are simultaneously exposed to three sources of ionizing 
radiation: radon and its short-lived decay products (simply 
called radon hereafter), external y-ray and uranium dusts. In 
the French cohort of uranium miners, the annual exposures to 
radon were assessed from 1946. On the other hand, the routine 
recording of occupational annual exposures to external y-ray 
and uranium dust only began in 1956 in the French mines, 
following the introduction of radiation protection measures like 
the introduction of forced ventilation. In this paper, the study 
population was thus restricted to the so-called post-55 subcohort, 
in order to have simultaneous exposure measurements for the 
three sources of ionizing radiation. This subcohort included 
3,377 miners from the original cohort who were first employed 
after December 31,1955. At the end of follow-up, 94 miners had 
died of lung cancer. An age limitation of 85 years for follow-up 
was fixed due to the imprecision in determining the exact cause 
of death in those occurring after the 85th birthday (28). Main 
characteristics of the post-55 subcohort are recorded in Table 1.

2.2. Multiple Exposure Assessment, Proxy 
Variables, and Multicollinearity
In the French cohort of uranium miners, information on 
radon, external y-ray exposures and uranium dusts exposure 
was assessed individually for each year of employment, but 
the method of measurement changed over time. Between 1946 
and 1955, there was no systematic exposure assessment in the 
French uranium mines. Therefore, the annual radon exposure, 
expressed in working level months (WLM), was retrospectively 
reconstructed by a group of experts for this period, based

on environmental measurements performed in the mines and 
information concerning the miners’ type of work and location. 
Then, from 1956, the individual radon exposure was recorded 
systematically, following the new radiation protection measures 
which were set up at this date. More specifically, from 1956 
to 1982, individual radon exposure was assessed from monthly 
ambient concentration measurements and information about 
the miners’ activity (i.e., job type, location, and time spent 
at each location). From 1983, annual radon exposure was 
individually recorded, using personal dosimeters integrated 
to the Individual System of Integrated Dosimetry (ISID). 
Personal dose equivalents due to y-ray exposures, expressed 
in millisieverts (mSv), were recorded individually since 1956, 
using two different types of personal dosimeters, depending 
on the calendar period: personal film badge dosimeters (CEA 
PS1 type) from 1956 to 1985 and personal thermoluminescence 
dosimeters (TLDs) integrated to the ISID from 1986 onwards. 
Finally, the annual exposure to long-lived radionuclides arising 
from uranium ore dust, expressed in Becquerels per cubic 
meter hour (Bq-m-3 •h), was retrospectively reconstructed for 
the period 1956-1958 (51). It was then assessed from monthly 
ambient measurements from 1959 to 1982. From 1983, individual 
measurements were collected with the ISID.

Potentially relevant proxy variables are also available in the 
French cohort of uranium miners to reflect the uranium miners’ 
working conditions and any other occupational exposures. First, 
there are the job types of French uranium miners which are 
classified into five categories : (1) hewers before mechanization, 
(2) hewers after mechanization, (3) other underground work 
before mechanization, (4) other underground work after 
mechanization, and (5) surface worker. The mechanization of 
work in the French uranium mines began in 1977, with the 
introduction of trucks. Thus, from 1977 onwards, the uranium 
miners’ working conditions can be assumed to be less physically 
demanding compared to the period before mechanization. But 
on the other hand, an additional occupational exposure to diesel, 
recognized as a lung carcinogen (52), appeared in the mines at 
the same period. Finally, hewers were assumed to have a more 
physically demanding labor and harsher working conditions 
than other underground and open-pit uranium miners. An 
additional proxy for uranium miners’ working conditions is the 
working location which includes four different mining districts: 
(1) Vendée, (2) Crouzille, (3) Forez, and (4) Hérault. Actually, 
the type of uranium deposits (i.e., granitic, sedimentary) has an 
impact on the undergrounds galleries of the uranium mines and 
then, on the miners’ working conditions. Note that the type of 
uranium deposits depends on the mining district. It is granitic 
for the districts of Vendée, Crouzille, and Forez and sedimentary 
for the district of Hérault (53).

An estimation of Pearson’s correlation coefficients, using all 
the available pairs of cumulative exposures to two different 
sources of ionizing radiation, clearly shows that the assessed 
values of occupational exposures to radon, y-ray and uranium 
dusts are highly correlated in the post-55 subcohort of French 
uranium miners. Indeed, the estimated coefficients are pretty 
high. It is equal to 0.90 between radon and y-ray, to 0.82 
between uranium dusts and y-ray and to 0.78 between radon and
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FIGURE 1 | Scatter plots of the observed cumulative exposures to y-rays and radon (left-hand panel), y-rays and uranium dust (at the center), radon and uranium 
dust (right-hand panel).

uranium dusts. Figure 1 displays the scatter plots of the observed 
cumulative exposures to the three sources of ionizing radiation. 
It clearly confirms that we are faced with a multicollinearity issue, 
requiring the use of a suitable statistical approach to estimate 
the combined effect of these three radiological exposures, the job 
type and the localization of the mine on the risk of death by lung 
cancer in the post-55 subcohort of French uranium miners.

2.3. Model Formulation
To deal with multicollinearity in the specific context of estimating 
the combined effect of a few but highly correlated exposure 
covariates, we opted for a Bayesian profile regression mixture 
PRM model. In this approach, three submodels must be specified 
and linked, through conditional independence assumptions: the 
disease, the exposure and the attribution submodels. A Bayesian 
PRM model is a hierarchical model that allows jointly describing: 
(a) the association between a disease outcome (e.g., the age at 
death by lung cancer of a miner) and an exposure profile (disease 
sub-model); (b) the probability distribution of the different 
covariates of interest in each cluster, in order to characterize 
specific exposure profiles (exposure sub-model); and (c) the 
random assignment of an individual to a given profile (or cluster) 
(attribution sub-model).

The disease sub-model conventionally used in radiation 
epidemiology is an Excess Hazard Ratio (EHR) model. Let Si be 
the age (in days) at death by lung cancer of miner i, i € 1,2,..., n

where n is the total number of miners. Let Ri be the right- 
censored age defined as the earliest age of miner i among age at 
death by a cause other than lung cancer; age on December 31, 
2007; age in days corresponding to his 85th birthday and age 
until loss to follow up. For each miner i, the observed outcome 
of interest can therefore be represented by the non-negative 
continuous variable Yi = min(Si,Ri) and the binary variable Si 
where Si = 1 if Si < Ri (i.e., miner i died of lung cancer at age 
Yi = Si) and Si = 0 if Si > Ri (i.e., miner i “would have died of 
lung cancer” after age Ri). The instantaneous hazard rate of death 
by lung cancer of miner i at age t, noted hi(t) is defined by

hi(t) = hc(t) • (1 + pCi ) (1)

Baseline hazard h0(t) is the instantaneous risk of death by lung 
cancer at age t by not exposed profile (the reference cluster of 
miners not exposed to ionizing radiation), Ci is the cluster label 
of miner i and f3c is the instantaneous excess risk of death by lung 
cancer of the cluster c. Thus, two miners belonging to the same 
cluster c have the same risk of death by lung cancer. Note that Vc, 
pc is subject to the constraint fic > — 1 to ensure the positivity of 
hi(t).

Following Hoffmann et al. (48), h0(t) is assumed to be 
piece-wise constant on four age intervals for which values of 
baseline hazard are assumed to be constant. These four intervals 
correspond to a partition of age axis defined by before 40 years
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old, between 40 and 55, between 55 and 70 and finally after 70 
years old. The corresponding four constants of baseline hazard 
are denotedby 71, k2, k3 and k4.

When modeling lung cancer mortality in the French cohort of 
uranium miners, we considered the age at death by lung cancer 
of each miner as disease outcome. Indeed, Kleinbaum suggested 
to favor age as time-scale whenever age at event is likely to have a 
larger effect on the hazard than time-on-study (54). Moreover, 
based on previous findings on cohorts of uranium miners, we 
can assume that, contrary to the attained age of a miner, the 
timing of study initiation has no inherent meaning in terms of 
the risk of lung cancer mortality in the cohort. Finally, several 
authors recommend to favor age as time-scale whenever possible 
since the modeling of the effect of age can be complex and prone 
to misspecification errors. Based on these arguments, we chose 
attained age as time scale. Thus, age is still accounted for in the 
disease model.

The exposure sub-model defines clusters based on covariates 
levels and on a similar risk to lung cancer death. Probability 
distribution of the covariates conditionally to a cluster is 
introduced. The different covariates considered for clusters 
include cumulative radiation exposures and other characteristics 
of miners. Details on these covariates are the following:

• Cumulative exposure of occupational radon XR, y-rays XG, 
and uranium dust Xf during the whole following up period 
of miner i;

• Job type Ji most occupied by miner i. This categorical variable 
have five modalities: (1) hewers before mechanization, (2) 
hewers after mechanization, (3) other underground work 
before mechanization, (4) other underground work after 
mechanization, and (5) surface work;

• Age at first exposure Ai of miner i. Sensibility of radiation can 
be function of age of exposure (55);

• Localization of the mine Mi. We distinguished Hérault mine 
and the others based on the deposit's type;

• Exposure duration Ti of the miner i. Four duration periods 
with similar number of miners are considered: miners who 
were exposed 5 years and less, 6-12 years, 13-18 years, and 
finally those who have been exposed for at least 19 years.

The probability distribution of each covariate depends 
on parameters which are function of the cluster c. We 
assumed lognormal distributions LogN(^X, aR) for positive 
and continuous variables and multinomial distributions 
Multinomial(pX) for categorical variables.

The different distributions are the following:

xRiCi = c, 
xGlCi = c, m?, 
Xp |Ci = c, mP ,. 
AilCi = c, MA,
JiICi = c, pc

RacGa
ac

Aac

MilCi = c, pM 
Ti|Ci = c, pTc

LogN (MR , aR) 
LogN (M?, a?) 
LogN (Mc, ap ) 
LogN (Mp, acA) 
Multinomial(pc) 
Multinomial(pM ) 
Multinomial(pcT)

(2)

The attribution sub-model associates miner i to a cluster Ci based 
on the probability pc of belonging to the cluster c. Let Cmax 

be the maximum number of clusters, p = (p1,p2,..., pCmax) 
defines the vector of the probabilities of assignment to each 
cluster among the Cmax ones. The parameter vector p follows a 
Dirichlet process. Due to the Dirichlet process, the number of 
non-empty groups is not arbitrarily fixed but estimated, only the 
maximum number of clusters Cmax is given. The construction of 
these mixing weights p = (p1, p2,..., pCmax), also called “stick- 
breaking” is the following:

Vc ~ Beta(1,a),c e {1,...,Cmax — 1} (3)

c—1
pc = Vc • (1 ' pk), c e {1,..., Cmax — 1} (4)

k=1

Cmax — 1

pCmax = 1 — pk (5)
k=1

The number of non-empty clusters is guided by a. A small 
value of a reduces the probability to have a large number of 
non-empty clusters, and respectively. This “stick-breaking” 
construction approximates the infinite cluster model with a finite 
one. The value of Cmax has to be chosen large enough to give 
a good approximation but small enough to avoid unnecessary 
calculations. Cmax should be set so that the probability pCmax is 
expected to be small (56). The choice of Cmax is highly affected 
by the value of a, and for a up to 10, the probability pCmax is 
negligible with Cmax equals to 50 (57). Some guidelines and more 
detailed description are given in Molitor et al. (37).

2.4. Prior Distributions and Bayesian 
Inference
2.4.1. Prior Distributions
Prior distributions are chosen poorly informative except for 
parameters involved in baseline hazard, in stick-breaking prior 
as well as means of exposure for which external information were 
available.

Thus, normal centered distributions with large variance were 
considered for the risk parameters fic and for the means of age at 
first exposure MA (on log scale) in each group c, c = 1,..., Cmax. 
Large Uniform distributions were considered for the geometric 
standard deviation parameters of the lognormal distributions aR, 
acG, acp, and aR. Dirichlet prior distributions with parameters 
equal to 1/2 were considered for the parameters of multinomial 
distributions, namely p{, p^f, and pT.

Concerning the mean of y-rays mG?, radon mR, and uranium 
dust Mp exposures (on log scale), information are available 
from German uranium miner cohort (58). Normal prior were 
considered for m?, MR and Mp with means and variances based 
on exposure levels of this cohort.

As parameters involved in baseline hazard are poorly 
informed by data in particular for young miners, external

Frontiers in Public Health | www.frontiersin.org 6 October 2020 | Volume 8 | Article 557006

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health%23articles


Belloni et al. Bayesian Profile Régression

TABLE 2 | Prior probability distributions assigned to the unknown parameters of a 
Bayesian PRM model including the disease sub-model, the exposure sub-model 
and the attribution sub-model.

Parameter Family

Disease sub-model fie Normal N (0, 106)

k1 Gamma G (23.7, 4.9 • 108)

k2 Gamma G (35.5, 2.6 • 107)

k3 Gamma G (88.1,1.6 • 107)

k4 Gamma G (29.7, 3.2 • 106)

Exposure sub-model Normal N (0.10, 2.25)

Normal N (-2.3, 8.08)

Normal N (1.01, 11.79)

Normal N (0, 106)

°cG. «C , °cP « Uniform U [0,100]

pJ, PM, pT Dirichlet D [0.5.......0.5]

Attribution sub-model a Uniform U [0.3, 10]

data on lung cancer mortality among men in France between 
1968 and 2005 were used to specify the informative prior 
gamma distributions on the parameters X1, k2, k3, and k4 
defining the baseline risk of death by lung cancer among French 
uranium miners (assumed constant by age intervals). Finally, 
as recommended by Molitor et al. (37), we used a uniform 
distribution on the interval [0.3, 10] for the parameter a which 
influences the number of non-empty clusters a posteriori. All 
details are given in Table 2.

2.4.2. Bayesian Inference
Figure 2 shows the directed acyclic graph for the full hierarchical 
model combining the disease sub-model, the exposure sub-model 
and the attribution sub-model. R package “PReMiuM” already 
exists to implement the Bayesian profile regression (47) for 
Bernoulli, Binomial, Poisson, Normal, categorical response as 
well as Weibull survival model. Unfortunately, the EHR survival 
model is not a possible option in this package. Thereby, a Markov 
Chain Monte Carlo (MCMC) algorithm was implemented in 
Python to sample from the joint posterior distribution of all 
unknown parameters and latent variables. Simulations were 
performed in order to validate the code, results of these 
simulations can be found in the Supplementary Material We 
used a Metropolis-within-Gibbs algorithm (59) to conduct the 
Bayesian inference, as full conditional distributions were not 
always analytically tractable. An adaptive phase of Metropolis- 
Hastings steps, which is necessary to improve the convergence 
and the efficiency of the algorithm, updates the variance of each 
proposal distribution to target an acceptance rate of 40% for 
single parameters and 20% for vectors (59). The parameters and 
the latent variables were updated separately. We ran 100 steps of 
100 iterations for the adaptive phase, then 10,000 iterations were 
dropped for the burn-in phase and finally 150,000 additional 
iterations were run. To decrease within-chain autocorrelations, 
we thinned the sample by storing only every 20 iterations. 
Posterior sample of each unknown quantity therefore contains 
7,500 values. A particular attention was done on the convergence

toward local modes by considering different initial values for 
parameter a directly linked to the number of non-empty clusters. 
Moreover, as suggested by Liverani et al. (47), we introduced 
three label switching moves in order to try to best avoid 
convergence to local mode (60, 61). The use of this three 
label switching moves is justified by the weak identifiably of 
the clusters labels leading to multiple modes of the posterior 
distributions of the pc’s. To explore multimodal posterior 
distributions, Papaspiliopoulos and Roberts (60) introduce two 
label switching moves which allow moves particularly at the 
beginning of MCMC algorithm. To improve ability of moves, 
Hastie et al. (61) add a third one . The basic idea of moves 
is to switch two labels j and k according to a probability min 
(1,rjk). Details on rjk are given in Table 3. Main characteristics 
of these three moves are the following. The first move has 
high acceptance probability of switching j and k when weights 
pj and pk are close. On the other hand, two clusters with 
similar number of miners are rarely switched. The two other 
moves propose only switch between two neighboring clusters 
namely j and j + 1. When label switching is accepted according 
to the second or third switching moves, the respective beta 
components V involved in the stick-breaking procedure are 
simultaneously modified (and consequently the weights p). 
The second move corresponds to high acceptance probability 
for neighboring clusters including different number of miners. 
For the third label switching, the respective beta components 
V are modified so that the corresponding weights pj and 
pj+1 are close to their expectation conditional on these new 
labels. Details on r and V are given in Table 3. For the three 
switching procedures, corresponding excess risks fi and other 
cluster specific parameters are simply exchanged when move is 
accepted.

2.5. Post-treatment
As described in Molitor et al. (37) and in Liverani et al. (47), the 
post-treatment is realized after running the MCMC algorithm. 
We chose to determine an optimal partition corresponding 
to a partition sampled from our MCMC algorithm. The 
main advantage of using a sampled partition is to avoid 
difficult problems linked to clusters labels which could be 
different between iterations. There are different techniques to 
obtain this optimal partition. We decided to use the post- 
processing approach based on a posterior similarity matrix. 
Another possibility could have been to use the MAP estimate 
corresponding to the partition leading to the highest value of 
the marginal posterior distribution. As mentioned by Liverani 
et al. (47), the MAP estimate is more sensitive to the Monte 
Carlo error than the techniques based on the similarity matrix. 
If K is the number of iterations, K binary square matrices Sk 
of dimension n x n are determined at each iteration k where 
Sk(i, j) = 1 if miners i and j share the same cluster at iteration 
k of the MCMC sampler, and 0 if not. The mean S of these 
K matrices (S1 , ..., SK) thus contains the proportion that two 
miners belong to the same cluster during MCMC sampler. The 
estimated best partition called Cbest is the one that minimizes 
the least-squared distance to matrix S. Cbest is a vector such
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Attribution model

Exposure model

Cat,q Cont,q

Disease model

FIGURE 2 | Directed Acyclic Graph associated to the full Bayesian PRM model. Circles indicate unknown quantities and rectangles indicate observed variables. Single
arrows indicate oriented probabilistic links between two quantities and double arrows indicate oriented deterministic links between two quantities. ZCat,q denotes the 
observed value of any categorical covariate q for uranium miner i and ZCont,q denotes the observed value of any continuous covariate q of uranium miner i.

that cbest is equal to the cluster label of miner i in this optimal 
partition.

Posterior distributions of parameters are obtained 
conditionally to the best partition Cbeet. Generally speaking, if 
(c denotes a parameter depending of cluster c, a sample from 
posterior distribution of parameter 9c conditionally to partition 
Cbeet is {(ÿk, k = 1,K} such that

(c,k = - £ eck,k
i : cbeet=c

(6)

with -c the number of uranium miners in cluster c 
and ck the cluster of miner i at iteration k. This post- 
processing procedure is apply on all parameters depending 
on cluster label involved in the three sub-models that is

(P, jR, aR, pfi, aG, /j.P, aP, /j.A, aA,p,pM,pT) as well as the 
weights p of clusters.

3. RESULTS

3.1. Univariate and Multivariate EHR Model 
Without Clustering
In order to assess impact of multicollinearity on EHR model, 
classical Excess Hazard Ratio model was implemented without 
clustering procedure. The instantaneous hazard rate of death by 
lung cancer of miner i at time t hi(t) is here directly function 
of exposures, without taking into account of multicollinearity. 
A first approach consists in considering each radiation source 
separately and secondly, to include simultaneously the three 
ones. Posterior median and 95% credible interval of P are 
obtained in each case. With only one exposure, hi(t) is then
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TABLE 3 | Label switching moves.

Move 1 Move 2 Move 3

/> ( zL )% - 
( Zk)

(1-Vj+1Ïn 
(1 -Vj j
0

k =j+ 1 

otherwise

V+1 i =j 

V i=j+1

Vi otherwise

(^ r2 k =j+1

otherwise

nk<n-Vk )
Z+1

(1 -V'm k<(1 -Vk)
Vi

i =L 

i =L+ 1

otherwise

The switching between iabeis j and k is accepted with probabiiity min(1, j). /f iabei 
switching is accepted, V is the new vaiue of beta-component V. nj is the number of 
miners in ciuster j .
Z+ = z + Zk, z' = z+1 m+Mk + z Êmëf'

Ri - 1+a+nj+i+Tii>j+i ni 
a+p+i+Y,i>j+i ni and R2 - a+nj+2i>j+i ni 

1+a+nj+2i>j+i ni

0

z

V''

defined by hi(t) = h0(t) ■ (1 + fi ■ Xi) where baseline hazard 
h0 is assumed piece-wise constant as previously, fi the excess 
risk of death by lung cancer associated to cumulative exposure 
X and Xi the cumulative exposure of miner i. When considering 
single exposure, X can be XR, XG or XD for respectively radon, 
Y-rays and uranium dust. Posterior medians of fi and associated 
95% credible intervals are 2.7 [1.1 , 5.2], 0.78 [0.28 , 1.67], and 
3.34 10-2 [1.07 10-2 , 7.00 10-2] for respectively radon, y - 
rays and uranium dust. As zero is excluded from each credible 
interval, the excess risk of death by lung cancer is strictly 
positive for each exposure. When considering simultaneously 
the three exposures of ionizing radiations, then hi(t) = h0(t) ■ 
(1 + fi^Xf + figXG + fi^Xf). Posterior medians of fi#, fie 

and fif with associated credible intervals are now 2.7 [-0.2 , 
5.8], 0.00 [-0.39 , 1.17], and -0.15 10-2 [-1.66 10-2, 3.81 
10-2], respectively. None of the exposures were significantly 
associated to the risk of death by lung cancer anymore. This 
result highlights the issue of multicollinearity of the exposures 
in our case. When considering exposure one per one, the values 
of estimated risks are difficult to interpret because could also be 
due to confusing effect from the other radiation sources which 
are both correlated with death by lung cancer and with studied 
exposure. As expected, introduction of simultaneous exposures 
leads to huge imprecision and consequently to no significant 
associations for some radiological exposures.

3.2. Convergence Toward Local Mode 
Under PRM Model
PRM model as defined in section 2.3 is implemented on the 
post-55 sub-cohort. As already mentioned in Liverani et al. (47), 
parameter a in Equation (3) is directly linked to the number 
of non-empty clusters. Under PRM model, this number is also 
estimated (only the maximum number of clusters Cmax is fixed) 
and a particular attention has to be made on local convergence 
issue even if label switching moves are introduced. To assess 
a convergence toward a local mode, MCMC samplers were 
run from different initial values of a. Initial values are chosen 
from 0.5 to 9.5 covering the prior support of a. For a given 
initial value, the number of non-empty clusters systematically 
converges to a single value without moves during the sampler,

while there is no convergence issue for the other parameters. 
Results are presented in Figure 3 where the number of non- 
empty clusters takes four possible values from 5 to 8 (including 
the cluster of non-exposed uranium miners) according to the 
different initial values of a. Local convergence issue is also 
clearly suspected despite the three label switching procedure. 
An explanation could be the low proportion of miners died 
from lung cancer. This proportion is indeed near 3% giving a 
low signal to infer the risk between clusters and lung cancer. 
Consequently, a restricted profile regression mixture RPRM 
model is considered where the number K of non-empty clusters 
is fixed. The attribution sub-model defined section 2.3 is then 
simplified where the weights Z have now a fixed number K of 
component. We ran MCMC algorithm from two different sets 
of initial values. A solution to choose K could have been to 
choose one value among the four values suggested by Figure 3. 
Deviance information criteria (DIC) (62) as well as Watanabe- 
Akaike, also called Widely Applicable, Information Criterion 
(WAIC) (63) are presented in Table 4 for K from 5 to 8. These 
two criteria are concordant in favor of 8 non-empty clusters. As 
penalized deviance is well-known to possibly select most complex 
models, we prefer to present results with K equal to 8 non-empty 
clusters but also to compare with the three other RPRM models 
corresponding to 5, 6, or 7 non-empty clusters (results given in 
the Supplementary Material). Note that when the number of 
non-empty clusters is fixed, no convergence issue was found for 
all other parameters.

3.3. Results With Fixed Number of 
Non-empty Clusters
Results for eight clusters model are summarized on Figures 4, 
5 while results for the 5-7 clusters can be found in the
Supplementary Material.

On the left of Figure 4, number of miners (top) and number of 
cases (bottom) per cluster are represented except for the cluster 
of non-exposed uranium miners. The seven resulting clusters are 
denoted by A to G. The order of clusters representation follows 
the order of the associated estimated risk of each cluster. Thus, 
cluster A corresponds to the lowest estimated posterior median 
of fi and cluster G to the higher one. The number of miners 
varies from 285 to 633 and the number of cases per cluster from 
4 to 30. On the right of Figure 4, results on the excess risk 
of death by lung cancer of each cluster (fiA to fig) are given. 
Boxes correspond to the posterior quartiles of fi and the whiskers 
extend to the posterior 2.5% and 97.5% quantiles illustrating 
95% credible interval of fi. Colors indicate whether posterior 
95% credible interval of fi is greater than zero (red) or include 
zero (blue). A cluster is called “significant high risk cluster” (or 
respectively “significant low risk cluster”) if whiskers are >0 
(respectively lower than 0). Two significant high risk clusters are 
here identified, namely clusters F and G. The posterior median 
excess risk of cluster G is estimated to 1.14 and to 0.66 for 
cluster F. Note that an excess risk of 1.14 means that miners 
belonging to this cluster have a risk multiplied by 2.14 compared 
to non-exposed uranium miners.
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i/}

Initial value of a

FIGURE 3 | Estimated number of non-empty clusters according to the initial value of a.

TABLE 4 | DIC and WAIC of Bayesian PRM model according to the fixed number 
K of non empty clusters.

Number K of non-empty clusters DIC WAIC

5 146,345 110,872

6 136,714 108,773

7 118,602 107,004

8 104,566 105,704

Characterization of each cluster in terms of covariates 
is illustrated on Figure 5. Each column corresponds to one 
covariate, cluster labels being specify on horizontal axis. For 
continuous covariates, such as cumulative exposures and age at 
first exposure, results on medians (e^) are on the top while results 
on standard deviation (on log scale) on bottom. For categorical 
covariates, such as Job type, Mine and Exposure duration, 
posterior distribution of probability of each category is shown. 
Boxes and whiskers are defined as previously. The two different 
colors, green and red, correspond to a 95% credible interval, 
respectively under or upper the global median on all miners 
(whatever the cluster) while blue color shows no particular values 
of the covariate for this cluster.

The cluster G with the highest risk of death by lung cancer 
corresponds to the most exposed uranium miners as credible 
intervals of the mean for cumulative radon, y-rays and uranium 
dust exposure are high. They were mainly working before 
mechanization or as hewer after mechanization, not in Herault's 
mine, pretty old when they started working compared to the 
other groups and being exposed during long time (longer than 
19 years). This cluster corresponds to the most difficult working

conditions. This high risk cluster is found for 5, 6, or 7 non- 
empty clusters (see Supplementary Material). Its systematic 
identification is reassuring in terms of model validity since it is 
consistent with standard assumptions in the field.

The cluster F associated to the second highest risk of death 
by lung cancer is characterized by miners who were also highly 
exposed but less than in cluster G, worked as hewer after 
mechanization or other underground job before mechanization, 
not working in Hérault's mine, were young when they started 
working compared to the other groups and exposed more than 
13 years. Working conditions of this second cluster can also 
be considered as difficult but less than those of cluster G in 
particular concerning hewer before or after mechanization and 
the duration of exposure a little lower. On the other hand, this 
second cluster highlights risk profile of miners who started to 
work early compared to the other groups. Results concerning this 
second cluster differ slightly depending on the fixed number of 
non-empty clusters (see Supplementary Material). Indeed, this 
cluster is associated to a positive excess risk which is significant 
for RPRM with K = 7, nearly significant with K = 6 but not 
significant with K = 5. Posterior medians of Pf and Pg as well 
as characteristics of these two clusters are very similar with K = 6 
and K = 7 to those already found with K = 8. Concerning RPRM 
model with 5 non-empty clusters, results on cluster G are similar 
while posterior median of excess risk Pf and characteristics of 
cluster F are different. Indeed, this second cluster F not contains 
exactly the same number of uranium miners for different values 
of K. Almost 630 common miners belong the second cluster for 
all fixed number K except for K = 5 where there are approximately 
250 miners more (cluster F in Supplementary Figures 1,2). 
When comparing the 630 commons miners to these 250 miners,
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FIGURE 4 | Number of French uranium miners (top left), number of deaths by lung cancer (bottom left) and instantaneous excess hazard ratio (per 100 WLM) of death 
by lung cancer (fi) in each cluster (right), when fitting a Bayesian RPRM model assuming 8 non-empty clusters from the French cohort of uranium miners. The cluster 
including non-exposed miners is not displayed. The boxes represent the three quartiles (1st quartile, median, and 3rd quartile) of the posterior distribution of fi and the 
whiskers of the boxplots show the 95% credible interval of the posterior distribution for each group.

we notice that common miners received a higher cumulative 
exposure to radon and they were all working in other mines than 
Hérault’s one. The 250 miners who differed with K = 5, have lower 
cumulative exposure to radon and slightly more than half of them 
worked in Hérault’s mine. Finally, there are only two cases of 
lung cancer death among these 250 miners. The risk associated 
to the 630 common miners is also higher than that associated to 
880 miners belonging the second cluster with the partition in 5 
non-empty clusters. Consequently, this second cluster F is again 
significant or nearly significant with partitions in 6 or 7 clusters 
but not with the partition in 5 non-empty clusters. The posterior 
median of fip is estimated near to the same value for 6 and 7 
clusters than 8 clusters but near 0.3 for model with 5 clusters. 
Despite these différences, this second high risk cluster exists for

all models with very near characteristics, in particular with less 
important cumulative exposures to radon, y-rays and uranium 
dust exposure but with young age at the start of work.

We do not systematically observe an increasing risk 
corresponding to increasing exposure levels. It is particularly 
the case when focusing on cluster B (Figure 5). This cluster is 
associated to the second lowest risk whereas the miners in this 
cluster are highly exposed. The main differences compared to 
other clusters are the important proportion of uranium miners 
working in Hérault’s mine and the period after mechanization. 
Modeling association between profiles and mortality allows to 
obtain finer interpretation of effect of exposure levels than 
studies including direct associations with exposures could not 
have done.
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FIGURE 5 | Characterization of the exposure profiles associated to each cluster, when fitting a Bayesian RPRM model assuming 8 non-empty clusters. The cluster 
including non-exposed miners is not displayed.

4. DISCUSSION

In this work, we developed an original Bayesian PRM model 
based on an instantaneous excess hazard ratio model as 
disease submodel and a truncated Dirichlet process mixture as 
attribution submodel. This model was applied to the estimation 
of the lung cancer mortality associated with multiple cumulative 
exposures to ionizing radiations as well as any other occupational 
exposures through proxy variables (i.e., job types and localization 
of the mines). An adaptive Metropolis-Within-Gibbs algorithm, 
including three label switching moves, was implemented in 
Python to sample from the joint posterior distribution of all 
the unknown parameters and latent variables. Simulations were 
performed in order to validate the implemented algorithm 
(Results can be found in the Supplementary Material).

After fitting our full Bayesian PRM model to the post- 
55 sub-cohort of French uranium miners, the target posterior 
distribution was suspected to be highly multi-modal and our 
MCMC algorithm to converge to local modes. Consequently, 
Bayesian RPRM models were also fitted to the post-55 sub- 
cohort, where the number K of non-empty clusters was fixed to
5, 6, 7, and 8. In this paper, we focused on the results provided 
by the Bayesian RPRM with 8 non-empty clusters (including 
the cluster of non-exposed miners) that led to very interesting 
clusters of miners. Two of them were associated with a strictly 
positive and statistically significant EHR of deathbylung cancer. 
The first group (EHR = 1.4, 95%IC = [0.60, 2.60]) corresponded 
to the miners the most highly exposed to radon, gamma rays 
and uranium dust and for more than 19 years (mainly before 
mechanization or as hewer after mechanization not in the mine 
located at Herault). The second group (EHR = 1.2,95%IC = [0.17, 
2.80]) corresponded to the miners who were very young when

first exposed and who were highly exposed to radon, gamma rays 
and uranium dust for more than 13 years (mainly hewer after 
mechanization or other underground job before mechanization). 
Finally, the model showed that the group of miners who worked 
after the mechanization and mainly in the mine located at 
Herault (the only included uranium mine with sedimentary 
soil) had the second lowest risk whereas the miners in this 
cluster were highly exposed. Thus, this Bayesian RPRM model 
allowed providing an original, rich and fine interpretation of the 
potential association between the risk of deathbylung cancer and 
specific radiation exposure profiles of French uranium miners, 
especially by modulating the effect of radiation co-exposures by 
other information, such as age at first exposure and duration of 
exposure. Results with the three other possible values of K from 5 
to 7 are described in Supplementary Material.

Unfortunately, the target posterior distribution of our full 
Bayesian PRM model was suspected to be highly multi-modal, 
given the data available in the post-55 sub-cohort of French 
uranium miners. This could be due to a lack of signal in the 
database avoiding to strongly highlight, if it exists, an “optimal” 
partition of uranium miners (i.e., with the highest posterior 
probability). Additionally, the Bayesian PRM models have a 
large number of parameters and latent variables and, thus, in 
the specific context of a lack of signal in the available data, 
applying a MCMC algorithm might not be the most suitable 
Bayesian inference. As illustrated by Gelman et al. (64), due to 
the random walk of Gibbs sampler and Metropolis algorithm, 
the simulations can take a long time before moving to the 
target distribution. Particularly, for complex models with high 
dimensional target distribution, a random walk can remain 
local. Betancourt and Girolami (65) also illustrated that Gibbs 
samplers and Metropolis-Hastings algorithms explore the target
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distribution slowly, and it get worse when the number of groups 
or levels increases. Although difficult to tune, Hamiltonian 
Monte Carlo (HMC) (66) algorithms may be more efficient than 
adaptative Metropolis-Within-Gibbs algorithms to fit Bayesian 
PRM models (65).

Other limitations, which are specific to our case study, open 
new avenues for methodological research in Bayesian PRM 
models. First, in this paper, we only considered the sum of 
exposure measurements collected for each covariate, over the 
entire career of each miner. The Bayesian PRM models could 
be extended to take into account the temporal dynamics of 
multiple exposures. Each individual could be assigned to a 
unique cluster that would depend on his whole trajectory of 
exposure. Alternatively, the class label of each individual could 
change over time depending on the temporal dynamics of his 
exposures. Secondly, this study does not account for the tobacco 
consumption of miners whereas it is known to be the most 
important cause of lung cancer. The smoking status is only 
available for 4.2% of the miners in the post-55 sub-cohort of 
French uranium miners. This major lack of information makes 
it very unreliable to adjust for smoking status when estimating 
the risk of death by lung cancer due to multiple exposures. It 
makes it also very unreliable to impute about 96% of smoking 
status given that no potential predictors for smoking status are 
available in the French cohort of uranium miners. Actually, if 
tobacco consumption is the main responsible for the excess 
hazard ratio of death by lung cancer in the French cohort of 
uranium miners then a higher proportion of smokers should be 
observed in the clusters with high excess hazard ratio compared 
to the ones with low excess hazard ratio (and reciprocally). Given 
the available data, this does not appear to be the case. The 
ratios between the number of smokers and the number of non- 
smokers for clusters A, B ,C, D, E, F, G (defined in Figure 4) 
are 12/3, 7/0, 14/5, 17/4, 5/5, 16/8, 34/12, respectively, where 
clusters F and G have the highest excess hazard ratios of death by 
lung cancer. The associated proportions of smokers for clusters 
A, B ,C, D, E, F, G are 0.8, 1.0, 0.74, 0.81, 0.50, 0.67, 0.74, 
respectively. Of course, these estimated ratios mustbe interpreted 
with caution given the limited available data (i.e., 142 miners 
with smoking status data). Nevertheless, previous analyses on the 
impact of smoking in occupational cohort studies of uranium 
miners suggested that smoking was not a source of confounding 
in these studies (67). This is not surprising since there is actually 
no strong reason to think that the smoking status is strongly 
associated with occupational exposure levels. Interestingly, if the 
proportion of missing smoking status was reasonable (about 
30%). The Bayesian PRM models could deal with these missing 
covariates while accounting for their associated uncertainty 
to identify exposure profiles. Note that our results should be 
interpreted with caution given the small number of death by 
lung cancer in the post-55 French cohort of uranium miners 
and the lack of data about the tobacco consumption of French 
uranium miners. As a third limitation of our study, exposure 
measurement error on radon, y-rays and uranium dust was 
not accounted for when identifying the clusters and estimating 
the associated risks of death by lung cancer. However, complex 
structures of measurement error were identified in the French 
cohort of uranium miners (48, 53, 68). It is also well-known that

exposure measurement error questions the validity of statistical 
inference in epidemiological studies (69, 70). When it is not or 
only poorly accounted for, it may lead to biased risk estimates, 
a loss in statistical power and a distortion of the exposure- 
response relationship. Owing to their hierarchical structure, 
the Bayesian PRM models could be extended to account for 
exposure measurement error which is, with multicollinearity, one 
of the most important issues when assessing exposome-health 
associations (21).

Defining and monitoring the human exposome is a strongly 
difficult task, given the wide variety of environmental factors, 
biological endpoints and gene-environment interactions (4, 6, 
22). Wild suggested that measuring exposure in any one of the 
following broad exposure categories—internal (e.g., hormones, 
microflora), specific external (e.g., toxicants) and general external 
(e.g., social, psychological)—can reflect certain aspects of the 
overall exposome (5). Moreover, following Bennett et al. (71), it 
can be advantageous for the development of statistical methods 
to narrow the focus of the exposome to a particular class of 
exposures or/and specific life stages as a way to improve and 
validate them to apply them later to the broader exposome 
concepts in a risk assessment or regulatory framework. This was 
the case in this work that focused on occupational exposure to 
several types of ionizing radiations of French uranium miners, 
considering only a small number (i.e., 7) of exposure covariates. 
This paper shows that the PRM models are promising for 
exposome research in this context. Interestingly, they could 
also guide some extensions for higher dimensional data. A 
great number of covariates including environmental and genetic 
risk factors could be included in the PRM models in order 
to study, for instance, gene-environment interactions but the 
performances of the PRM models should then be assessed in this 
more challenging context.
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